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ABSTRACT 

 

This paper describes and compares different forecasting techniques used 
to build a real-world Industry 4.0 application using concepts of Digital 

Twins. For this experiment, real data collected from a temperature sensor 

during the initial stages of a manufacturing process is used. This raw data 

from the sensors is preprocessed using state-of-the-art time series 
techniques for gap removal, normalization, and interpolation. The 

processed data are then used as input for the selected forecasting 

techniques for training, forecasting, and tests. Finally, the rates of the 
different techniques are compared using accuracy measures to determine 

the most accurate technique to be used in the application to support its 

forecasting use cases. This paper also explores different areas that can 
be used as topics for future work. 
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1 INTRODUCTION 
 

The concept of digital twins is indeed relatively 

new in its popularized form [1], but its underlying 

principles have been applied in various industries for 

many years. Michael Grieves is often credited with 

introducing the term digital twins in 2002 during a 

conference in the context of product lifecycle 

management (PLM). However, it is essential to note 

that the idea of creating digital representations of 

physical objects or systems happened before this 

term was coined. 

Historically, there has been little consensus on 

the exact definition of digital twins, or the 

terminology used to describe them. This lack of 

agreement stems from the multidisciplinary nature 

of digital twins, which can be applied to various of 

fields, from manufacturing to healthcare, and 

beyond [2], represented in Figure 1. 

 

Figure 1 – Digital Twins applications 

 

Source: [2] 

 

In 2020, the Digital Twin Consortium was 

established by member companies to address this 

problem [3]. The consortium primarily focuses is on 

standardizing technology and terminology related to 

digital twins to promote their wider adoption across 

industries. This effort reflects the growing 

recognition of the potential benefits that digital 

twins can offer in terms of improving product 

design, manufacturing processes, asset 

management, and overall system performance. 

Digital twins create virtual representations of 

physical objects, systems, or processes to monitor, 

simulate, and optimize their behavior and 

performance. These virtual representations are 

continuously updated with real-time data, allowing 

for better decision-making, predictive maintenance, 

and enhanced domain efficiency. 

Within the scope of Industry 4.0 and the amount 

of data provided by the Internet of Things (IoT), it 

is possible to compute a digital replica of a physical 

asset. This so-called Digital Twin replica ideally 

represents all the behaviors and functioning of the 

physical twin. The high-fidelity Digital Twin model 

of physical assets can produce system data close to 

physical reality, which offers extraordinary 

opportunities for forecasting, simulation, and 

diagnosis of asset failures. Moreover, in forecasting 

Digital Twins can be used to optimize the energy 

consumption of assets, reducing operational costs 

and environmental impact. They help in fine-tuning 

parameters for optimal performance while 

minimizing energy usage. 

In this context, this work investigates different 

forecasting techniques used to build a real-world 

Industry 4.0 application using concepts of Digital 

Twins, comparing such methods with real data 

collected from a temperature sensor during the 

initial stages of a manufacturing process. As 

described in Figure 2, sensor data is collected from 

an industry and its data is consolidated into an IoT 

Hub to be used as inputs for the different digital 

twin’s models that are generated from the selected 

assets of the chosen industry. Finally, this data is 

presented to the end users as dashboards, graphs, 

and reports informing them of the real and 

predicted condition of the equipment. 

 

Figure 2 – Digital Twins applications diagram 

Source: Author 

 

The paper is organized as follows. Section 2 

outlines the related work on time series forecasting. 

Section 3 discusses the materials and methods of 

this article with the results of each selected 

forecasting method. Section 4 presents a 

comparison of the results of the selected methods. 

Section 5 offers the study’s conclusion and list 

different areas that can be used for future works. 

 

2 BACKGROUND AND RELATED 

WORKS 

 

2.1 TIME SERIES PREPROCESSING 

Univariate time series data, characterized by a 

sequence of observations recorded at successive 
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time points, find applications in diverse domains, 

including finance, healthcare, meteorology, and 

industrial processes. Before employing advanced 

analysis and forecasting methods, it is crucial to 

effectively preprocess the data to enhance its 

quality, remove noise, and ensure reliable results 

[4], [5], [6]. 

Outliers, extreme values that deviate 

significantly from the general trend of the data, can 

distort statistical analyses and modeling efforts. 

Techniques such as z-score-based [7] methods can 

help identify and remove these outliers, ensuring 

the accuracy of subsequent studies. 

IoT-generated time series data can exhibit 

outliers due to various factors including sensor 

malfunctions, transient disturbances, or even cyber-

attacks. Identifying these outliers is crucial, as they 

can distort the temporal patterns important to 

accurate predictions in IoT systems. 

The mean absolute deviation (MAD) which its 

formula is described in equation 1, emerges as a 

powerful approach to detecting outliers within time 

series data [7]. Given IoT data’s dynamic and 

evolution, the MAD method accounts for the 

absolute deviations of individual data points from 

the median of the entire time series. This 

adaptability is particularly valuable in IoT scenarios, 

where outliers might emerge from previously 

unseen events or irregularities. 

 

𝑀𝐴𝐷 =  
∑|xi−𝑥|

𝑛
   (1) 

 

The values identified as outliers were removed 

from the time series and the gaps created after the 

removal were filled using linear interpolation. 

Missing values are expected in time series data and 

can arise for various reasons. Imputing missing 

values is essential to ensure a continuous and 

complete time series for analysis. Linear 

interpolation is widely used to estimate missing 

values based on neighboring observations and is a 

widely used method [8]. 

Time series data often vary in scale and 

magnitude, leading to biased analyses and 

misleading interpretations. Normalization, whose 

formula is described in equation 2, ensures that all 

features are brought to a standard scale, eliminating 

the dominance of high-scale variables in analyses 

like clustering, classification, and regression. In the 

formula, min and max values refer to the 

normalization of the variable x, and y is the 

normalized value. 

 

𝑦 =  
(𝑥−𝑚𝑖𝑛)

(𝑚𝑎𝑥−𝑚𝑖𝑛)
   (2) 

 

It is essential to verify the time series 

stationarity. The Augmented Dickey-Fuller (ADF) 

[9] test is a widely used statistical test to 

determine if a time series is stationary [10], 

meaning that its statistical attributes remain 

unchanged over the time. 

Walk-forward validation using a sliding window 

[11], represented in Figure 3 and known as rolling 

validation or moving window validation, is a time 

series cross-validation technique used to assess the 

performance of time series forecasting models. 

Unlike traditional cross-validation, where data is 

randomly shuffled, maintaining the temporal order 

of the data, which is crucial for time series analysis, 

Walk-forward validation simulates the real-world 

scenario of making sequential predictions as new 

data becomes available over time. 

 
Figure 3 – Walk Forward validation with a sliding 

window. 

 
Source: Author. 

 

Walk-forward validation also considers the 

model to be fitted every time the window is moved 

forward along the time series. Still, since the 

collected data from the sensor is a stationary time-

series, it is not necessary to re-fit the model. This 

represents less computational requirements during 

the execution of tests and during the usage of the 

model in real-time with new data from the sensors. 

A primary advantage of this method is that more 

data is used to train and test the model without 

having to use a validation set and without the risk 

of overfitting [12].   

 

2.2 FORECASTING METHODS 

2.2.1 Baseline methods 

As baseline methods, we considered the Naïve 

and Naive Drift approaches. Both serve as reference 

points for evaluating the performance of more 

complex forecasting models. These methods 

provide simple and straightforward predictions that 

can be used to benchmark the effectiveness of 

more sophisticated techniques.  



 

A Comparative Study of Forecasting Methods in the Context of Digital Twins 

 

 

 

DOI: 10.25286/repa.v9i1.2771 
31 

The Naive method predicts that the next value 

will be the same as the last observed value using 

the formula described in eq. 3 It assumes that there 

is no change or trend in the data. The equation uses 

the value for yt using the previous value yt-1of the 

time series. 

 

yt = yt-1   (3) 

 

Naive Drift, or the Drift method, is a basic 

forecasting technique that assumes a linear trend in 

the time series data. It is an extension of the Naive 

method, which predicts that the next value will be 

the same as the last observed value. The Naive Drift 

method, however, considers the time elapsed 

between observations and adjusts the prediction 

based on this elapsed time, effectively incorporating 

a linear trend or drift into the forecast. 

 

2.2.2 Statistical methods 

Statistical forecasting uses historical data and 

statistical techniques to predict time series values 

and other data types. 

The ARIMA (Auto Regressive Integrated Moving 

Average) method was developed and introduced in 

the early 1970s [13]. The fundamental concepts 

behind ARIMA were established by the statisticians 

George E. P. Box and Gwilym M. Jenkins, and their 

work is documented in the book titled ”Time Series 

Analysis: Forecasting and Control”, which was first 

published in 1970. This method is still being used 

for time series forecasting due to its good results, 

including forecasting using industrial sensor data 

[14] [15] [16]. Another advantage of this method 

is that it when only has limited historical data from 

the sensors to use during the training phase [17]. 

 

2.2.3 Machine Learning 

Machine learning can be used for univariate time 

series forecasting by leveraging patterns and 

relationships within historical data to predict future 

values of a single variable over time. 

Recurrent Neural Networks (RNNs) are artificial 

neural network architecture that handle sequence 

data, such as time series. Unlike traditional neural 

networks that process each input individually, RNNs 

have feedback connections, allowing previous 

information to influence the processing of 

subsequent inputs. The critical feature of RNNs is 

their ability to maintain an internal memory or 

hidden state, which is updated with each new input 

and influences future processing. This memory 

enables RNNs to capture long-term dependencies in 

data sequences, making them particularly useful in 

situations when the previous context is relevant for 

understanding the current context. 

In the paper [18], Hochreiter and Schmidhuber 

proposed the LSTM architecture to solve the 

vanishing gradient problem that can occur in 

traditional recurrent neural networks (RNNs). The 

key element that gives the capability to capture 

long-term dependencies to LSTM is called memory 

block and described in Figure 4.  

 

Figure 4 – LSTM diagram 

 
Source: [19]. 

 

Due to this memory block, LSTMs can handle 

long-range dependencies and capture patterns in 

sequences over extended time intervals, making 

them highly suitable for tasks involving sequential 

data, such as time-series forecasting [19] [20] 

[21] [22]. 

 

2.4 HYPERPARAMETERS SEARCH  

Hyperparameter search is the process of finding 

the best set of hyperparameters for a machine 

learning model [23]. Hyperparameters are 

parameters that control the learning process of the 

model but are not learned from the data. Some 

common examples of hyperparameters include the 

learning rate, the number of epochs, and the 

number of hidden layers in a neural network. 

 

2.5 FORECASTING ACCURACY 

Forecasting accuracy refers to the degree of 

closeness between the predicted values from a 

forecasting model and the real data of the target 

variable. It measures how well a forecasting model 

can accurately capture the underlying patterns, 

trends, and variations in the data to make accurate 

predictions of future values. 
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The forecast accuracy measures are always 

calculated using test data that were not used when 

computing the forecasts [24]. When using forecasts 

that are on the same scale, the root mean square 

error (RMSE) is one of the recommended methods 

and it is defined using the formula in (4). In the 

equation n is the number of observations, 𝑦𝑖 is the 

real observed value at time, and 𝑦�̂� is the predicted 

value at time 𝑖. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1   (4) 

 

3 MATERIALS AND METHODS 

 

This section provides a comprehensive overview 

of the executed steps. It begins with data loading, 

followed by preprocessing. Next, we delve into 

training using four distinct methods. Finally, we 

present the results obtained from these methods. 
 

3.1 DATA SET 

The first step executed during this study was to 

perform the data preprocessing required on the 

collected data from the industrial sensors. The 

collected sensor data was saved in a CSV file, 

including the timestamp and temperature 

attributes. The dataset range starts from 00:00 of 

1st of June of 2022, to 23:59 of June 29, 2022 with 

a total of 88,741 sensor readings. This represents 

an average of 3,060 readings per day. 

The data from this CSV was loaded as a time 

series and plotted using a Python data visualization 

library called Matplotlib [26] to execute the first 

visual inspection and analysis. During this first 

visual inspection of Figure 6, it was possible to see 

a similar behavior of the time series along the 

collected period, indicating the time series could be 

identified as stationary and requiring a stationarity 

test to be executed [9]. 

 

3.2 PREPROCESSING 

The subsequent step involved identifying outliers 

using mean absolute deviation (MAD), eliminating 

them, and then employing linear interpolation to fill 

the gaps left in the time series due to these 

removals. This process detected and replaced 1,031 

outliers in the time series and can be visualized in 

Figure 7. The total length of the time series was not 

affected because all removed outliers were replaced 

using linear interpolation. 

Another executed step was to verify the time 

series stationarity to validate this hypothesis 

identified in the visual inspection after plotting the 

time series. The Augmented Dickey–Fuller (ADF) 

[9] test was executed and confirmed the collected 

sensor data created a stationary time series. The 

ADF test returned a p-value equals to 

3.408511793361129e−29, and since this value is 

less than or equal to 0.05, H0 was rejected, and 

stationarity was confirmed. 

The data set was then split into training and test 

data sets. The division of 80/20 was used to split, 

meaning the training data set was created with 

80% of the values total and test 20%. Their sizes 

were 70,992 and 17,749 sensor readings. After this 

split, both data sets were normalized as described 

in section 2.1 using the normalization parameters 

obtained from the training data set. The result of 

this step can be observed in Figure 8. 

 

3.3 EXPERIMENTAL METHODOLOGY  

The forecast range selected in our experiments 

was from one step forward to ten steps. The 

forecasting used walk-forward validation with a 

sliding window described in Figure 3. The sliding 

window size was set according to the forecasting 

range for each iteration of the test. This means the 

executed test was repeated 10 times with different 

forecasting ranges, varying from 1 to 10. 

The first baseline forecasting method executed 

was the Naive forecast. The forecast horizon 

selected for this method was from one step to ten 

steps forward. The forecast was executed using the 

test data set for each different value of the forecast 

horizon and always using the previous observed 

value to determine the forecasted values. The 

accuracy of this method is presented in Table 1. 
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Figure 6 – Raw data from temperature sensor. 

 

  

Source: Author. 

Figure 7 – Outliers detection using MAD. 

 

 
Source: Author. 
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Figure 8 – Normalized training and test datasets. 

 

 
Source: Author. 
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Table 1 – Naive Forecasting RMSE. 

Forecast 

horizon 

RMSE 

1 step 0.020107 

2 steps 0.028467 

3 steps 0.035618 

4 steps 0.040981 

5 steps 0.047885 

6 steps 0.053208 

7 steps 0.054365 

8 steps 0.059190 

9 steps 0.064050 

10 steps 0.069753 

Source: Author. 

 

The following executed forecasting method was 

Naive Drift and the same forecasting horizons from 

the previous method were also used in this one as 

well. For this method, different subsets of the 

training data set were used to verify if smaller 

training subsets can speed up the training phase 

without compromising the accuracy of the forecasts. 

The training data sets were tested using the lengths 

described in Table 2. 

 
Table 2 – Training data set lengths used for in models. 

Training data set lengths 

50 

100 

500 

1000 

10,000 

20,000 

50,000 

70,000 

Source: Author. 
 

After some preliminary experiments, the best 

accuracy with the lower RMSE was observed with 

50,000 values from the training data set. Using the 

complete data set or more significant amounts was 

unnecessary to achieve better accuracy for this 

forecasting method. The result of this method was 

very similar when compared to the previous 

method, Naive, even having much more data being 

used for the training compared to Naive since it only 

uses the previous n readings. One of the possible 

reasons for this is due to the high-frequency nature 

of the time series used in this experiment, which 

helps in the first method. The RMSE for this method 

is described in Table 3. 

Table 3 – Naive Drift Forecasting lowest RMSEs. 

Forecast 

horizon 

RMSE 

1 step 0.020107 

2 steps 0.028467 

3 steps 0.035619 

4 steps 0.040982 

5 steps 0.047886 

6 steps 0.053210 

7 steps 0.054367 

8 steps 0.059192 

9 steps 0.064053 

10 steps 0.069757 

Source: Author. 

 

Auto ARIMA was also executed with the same 

data set and the same forecasting horizons as the 

previous method. The length of the training data set 

was also tested using the different values defined in 

Table 2, using the same approach as the Naive Drift 

method that was previously executed. As was 

initially expected, this method resulted in better 

accuracy than the baseline methods. Moreover, 

according to Table 7 some scenarios of multistep 

ahead required less training to obtain better 

accuracy. The RMSE of this method is described in 

Table 4 and Table 7, the latter includes the length 

of the training data set that resulted in the lowest 

RMSE value. For this method, the StatsForecast 

[26] Python library was used. 

 
Table 4 – Auto ARIMA Forecasting lowest RMSEs. 

Forecast 

Horizon 

RMSE 

1 step 0.018433 

2 steps 0.026235 

3 steps 0.033717 

4 steps 0.039248 

5 steps 0.043817 

6 steps 0.051401 

7 steps 0.052531 

8 steps 0.055412 

9 steps 0.064519 

10 steps 0.066474 

Source: Author. 

 

After completing the tests with the baselines and 

statistical methods, the same data set was 

executed using a Long Short-Term Memory (LSTM) 

recurrent neural network [18]. This model was 

selected because of its ability to capture long-range 
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dependencies [18] and due to this it can effectively 

handle sequential data such as time-series, which is 

the case in the dataset being used in this study.  

The first executed step was the hyperparameters 

tuning. This was done using an open-source Python 

package for hyperparameter optimization 

framework named Optuna [23] that allows to 

dynamically define the hyperparameters search 

space to find its optimal values. The 

hyperparameters search was executed using the 

following ranges. 

• Number of layers: 1 - 100 

• Size of hidden layer: 1 - 250 

• Dropout: 0.0 – 0.9 

• Epochs: 1 - 999 

 

As a result of this search, the following values 

were found and used in the LSTM model: 

• Number of layers: 1 

• Size of hidden layer: 11 

• Dropout: 0.12491736459588197 

• Epochs: 405 

• Learning Rate: 1e-3 

• Optimizer Class: Adam 

 

The RMSE obtained by this method can be 

visualized in Table 5.  

 

Table 5 – LSTM Forecasting lowest RMSEs. 

Forecasting 

Horizon 

RMSE 

1 step 0.016199 

2 steps 0.020448 

3 steps 0.025473 

4 steps 0.028625 

5 steps 0.031311 

6 steps 0.035913 

7 steps 0.036612 

8 steps 0.038325 

9 steps 0.044608 

10 steps 0.044678 

Source: Author. 

 

4 RESULTS COMPARISON 

 

The first step was to verify with the Friedman test 

[28] if there is significant statistical difference 

observed across the collected values or if they could 

have occurred by chance. The test returned p-value 

rejecting the null hypothesis of the test, meaning 

there are significant differences among the 

obtained RMSEs from each method. 

Then, a comparison between the selected 

methods using the lowest RMSE values collected for 

each forecast horizon regardless of the length of the 

training data set, which means that the optimal size 

of the training data set was used in this first 

comparison. As presented in Table 6, LSTM 

outperformed the other methods in all different 

forecasting horizon scenarios. Auto ARIMA was the 

second on the list followed by Naive Drift and Naïve, 

which obtained similar values for the RMSE. LSTM 

outperformed Auto ARIMA by an average of 4.83%. 

Auto ARIMA outperformed Naive Drift and Naive by 

an average of 21.30%. 

 

Figure 9 and 10 shows the comparison among 

all selected methods to their forecasting time. The 

first image presents the amount of time that each 

method took to execute the forecasting for all 

horizons. The second image presents the average 

time for each forecasting step, also in horizons. 

It was also observed in Figure 11 that LSTM 

underperforms statistical methods when using 

small training data sets. The same figure shows 

that the LSTM outperforms the other selected 

methods only when the training data set contains 

at least 500 sensor readings. 

 

Table 6 – Lowest RMSE for each method 

Forecast 

Horizon 

Naive Naive 

Drift 

Auto 

ARIMA 

LSTM 

1 step 0.020107 0.020107 0.018433 0.016199 

2 steps 0.028467 0.028467 0.026235 0.020448 

3 steps 0.035618 0.035619 0.033717 0.025473 

4 steps 0.040981 0.040982 0.039248 0.028625 

5 steps 0.047885 0.047886 0.043817 0.031311 

6 steps 0.053208 0.053210 0.051401 0.035913 

7 steps 0.054365 0.054367 0.052531 0.036612 

8 steps 0.059190 0.059192 0.055412 0.038325 

9 steps 0.064050 0.064053 0.064519 0.044608 

10 steps 0.069753 0.069757 0.066474 0.044678 

Source: Author. 
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Figure 9 –Forecasting time for the test data set. 

 

 
 

Source: Author. 
 
Figure 10 –Average forecasting time for the test data set. 

 

 
 

Source: Author. 
 
Figure 11 –Training data set size and obtained RMSEs. 

 

 
 

Source: Author. 
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Table 7 – Obtained RMSEs from each method. 

 Training data set size 1 step 2 steps 3 steps 4 steps 5 steps 6 steps 7 steps 8 steps 9 steps 10 steps 

Naive 1 
0.020107 0.028467 0.035618 0.040981 0.047885 0.053208 0.054365 0.05919 0.06405 0.069753 

            

Naive 

Drift 

50 0.020400 0.029124 0.036678 0.042643 0.050232 0.056143 0.057993 0.063645 0.069447 0.075362 

100 0.020334 0.028941 0.036366 0.042114 0.049424 0.055155 0.056715 0.062143 0.067444 0.073534 

500 0.020139 0.028536 0.035734 0.041155 0.048135 0.053507 0.054738 0.059608 0.064577 0.070373 

1000 0.020119 0.028494 0.035665 0.041055 0.047992 0.053333 0.054525 0.059378 0.064286 0.070024 

10000 0.020108 0.028469 0.035623 0.040988 0.047895 0.053221 0.054380 0.059208 0.064074 0.069783 

20000 0.020108 0.028468 0.035620 0.040984 0.047889 0.053214 0.054372 0.059198 0.064059 0.069765 

50000 0.020107 0.028467 0.035619 0.040982 0.047886 0.053210 0.054367 0.059192 0.064053 0.069757 

70000 0.020107 0.028467 0.035619 0.040982 0.047886 0.053210 0.054367 0.059192 0.064053 0.069757 

            

Auto 

ARIMA 

50 0.020198 0.027358 0.036033 0.041232 0.045591 0.053542 0.055194 0.058626 0.069206 0.070652 

100 0.020344 0.027283 0.035671 0.040611 0.044248 0.052001 0.053055 0.055851 0.066770 0.067413 

500 0.019885 0.026753 0.035506 0.040480 0.043868 0.052237 0.053069 0.055437 0.067446 0.066761 

1000 0.020512 0.028126 0.037854 0.042742 0.046243 0.055927 0.054748 0.056872 0.072260 0.067181 

10000 0.019330 0.026405 0.034969 0.039948 0.043817 0.052047 0.052531 0.055613 0.066379 0.066474 

20000 0.018687 0.026366 0.033781 0.039364 0.044503 0.051401 0.053059 0.055412 0.064960 0.066532 

50000 0.018433 0.026235 0.033717 0.039248 0.044366 0.051544 0.052647 0.055710 0.064519 0.066596 

70000 0.018586 0.026338 0.033968 0.039474 0.044390 0.051764 0.052942 0.055598 0.065215 0.066498 

            

LSTM 

50 0.045923 0.057969 0.072213 0.081149 0.088763 0.101809 0.103791 0.108647 0.126457 0.126655 

100 0.031239 0.039433 0.049122 0.055201 0.060381 0.069255 0.070603 0.073907 0.086022 0.086157 

500 0.018736 0.023650 0.029461 0.033107 0.036214 0.041536 0.042345 0.044326 0.051592 0.051673 

1000 0.019192 0.024226 0.030179 0.033914 0.037096 0.042548 0.043376 0.045406 0.052849 0.052932 

10000 0.018335 0.023144 0.028831 0.032399 0.035439 0.040647 0.041439 0.043378 0.050488 0.050567 

20000 0.017225 0.021743 0.027086 0.030438 0.033294 0.038187 0.038931 0.040752 0.047433 0.047507 

50000 0.016262 0.020527 0.025571 0.028736 0.031432 0.036051 0.036753 0.038473 0.044780 0.044850 

70000 0.016199 0.020448 0.025473 0.028625 0.031311 0.035913 0.036612 0.038325 0.044608 0.044678 

 

Source: Author. 
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5 CONCLUSIONS 

 

In this work, we present different forecasting 

techniques used to build a real-world Industry 4.0 

application using concepts of Digital Twins. This 

experiment used real data collected from a 

temperature sensor during the initial stages of a 

manufacturing process were used. 

The provided results contain information to 

conclude that LSTM obtained a better outcome for 

the RMSE when using large training data sets. LSTM 

got similar or lower results when working with a 

small training data set. This means that LSTM must 

be carefully selected depending on the amount of 

data available to train the model. Moreover, Figure 

9 and 10 shows LSTM taking more processing time 

than the other selected methods in the forecasting 

phase. It also adds an extra step in the process: 

which is the hyperparameters search before fitting 

the model. 

It is also clear that, despite the discussed 

drawbacks of using LSTM models, its accuracy gains 

can have a significant positive impact, especially in 

the context of Digital Twins and industrial 

applications [29]. The following points can be 

observed: 

• Accuracy Gains: LSTM models are known for 

capturing sequential patterns and 

dependencies in data, making them valuable 

for time series forecasting and predictive 

modeling. Given that it resulted in improved 

accuracy, it can lead to more reliable 

predictions and decision-making. According to  

the results presented in this work, LSTM 

outperformed Auto ARIMA by an average of 

4.83%, which be enough to avoid equipment 

faults and reduced maintenance tasks. 

• Reduced Resource Usage: By achieving 

more accurate predictions, the usage of 

industrial, such as natural gas and electricity, 

can be optimized. This means that utility 

resources can be used more efficiently, 

potentially reducing costs, minimizing waste, 

and reducing the environmental impact. 

• Financial Impact: Even small gains in RMSE 

can translate to significant cost savings in an 

industrial environment. This is particularly 

crucial in industries where energy 

consumption, resource utilization, and 

operational efficiency are closely monitored 

and directly impact on the bottom line. 

 

In summary, despite the potential drawbacks of 

using LSTM models, their ability to enhance 

accuracy and, consequently, reduce resource 

consumption and costs can make them a valuable 

tool in the context of Digital Twins and industrial 

operations. However, it's important to continue 

refining and fine-tuning these models to mitigate 

their limitations and maximize their benefits. 

The following topics can be used for future work 

around the subject of this paper. 

• How to identify the most optimal length of the 

training data set without having to test different 

lengths? 

• Execute comparisons using different multi-step 

ahead forecast strategies, such as recursive, 

direct and hybrid. 

• Execute forecasting using multivariate 

timeseries by using information from other 

digital twin’s sensor data and its geolocations. 

With the objective to predict failures and reduce 

utility consumption. 
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