

A Comparative Study of Forecasting Methods in the

Context of Digital Twins

1Escola Politécnica de Pernambuco,

Universidade de Pernambuco, Recife, Brasil.
E-mail: jcsm@ecomp.poli.br

2Centro de Informática, Universidade

Federal de Pernambuco, Recife, Brasil.

DOI: 10.25286/repa.v9i1.2771

Esta obra apresenta Licença Creative

Commons Atribuição-Não Comercial 4.0
Internacional.

Como citar este artigo pela NBR 6023/2018:

João Souto Maior; Byron Leite Dantas

Bezerra; Luciano Leal; Celso A. M. Lopes
Junior; Cleber Zanchettin. A Comparative

Study of Forecasting Methods in the Context
of Digital Twins. Revista de Engenharia e

Pesquisa Aplicada, v.9, n. 1, p. 28-40, 2024.
DOI: 10.25286/repa.v9i1.2771

João Souto Maior1

 orcid.org/0000-0002-5470-0331

Byron Leite Dantas Bezerra1

orcid.org/0000-0002-8327-9734

Celso A. M. Lopes Junior1

orcid.org/0000-0003-1356-5759

Cleber Zanchettin2

orcid.org/0000-0001-6421-9747

ABSTRACT

This paper describes and compares different forecasting techniques used
to build a real-world Industry 4.0 application using concepts of Digital

Twins. For this experiment, real data collected from a temperature sensor

during the initial stages of a manufacturing process is used. This raw data

from the sensors is preprocessed using state-of-the-art time series
techniques for gap removal, normalization, and interpolation. The

processed data are then used as input for the selected forecasting

techniques for training, forecasting, and tests. Finally, the rates of the
different techniques are compared using accuracy measures to determine

the most accurate technique to be used in the application to support its

forecasting use cases. This paper also explores different areas that can
be used as topics for future work.

KEY-WORDS: Digital Twins; Sensors; Time Series; Forecasting.

Luciano Leal1

orcid.org/0000-0002-5783-874X

mailto:jcsm@ecomp.poli.br
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5470-0331
https://orcid.org/0000-0002-5470-0331
https://orcid.org/0000-0002-8327-9734
https://orcid.org/0000-0002-8327-9734
https://orcid.org/0000-0003-1356-5759
https://orcid.org/0000-0003-1356-5759
https://orcid.org/0000-0001-6421-9747
https://orcid.org/0000-0001-6421-9747
http://orcid.org/0000-0002-5783-874X
http://orcid.org/0000-0002-5783-874X

A Comparative Study of Forecasting Methods in the Context of Digital Twins

DOI: 10.25286/repa.v9i1.2771
29

1 INTRODUCTION

The concept of digital twins is indeed relatively

new in its popularized form [1], but its underlying

principles have been applied in various industries for

many years. Michael Grieves is often credited with

introducing the term digital twins in 2002 during a

conference in the context of product lifecycle

management (PLM). However, it is essential to note

that the idea of creating digital representations of

physical objects or systems happened before this

term was coined.

Historically, there has been little consensus on

the exact definition of digital twins, or the

terminology used to describe them. This lack of

agreement stems from the multidisciplinary nature

of digital twins, which can be applied to various of

fields, from manufacturing to healthcare, and

beyond [2], represented in Figure 1.

Figure 1 – Digital Twins applications

Source: [2]

In 2020, the Digital Twin Consortium was

established by member companies to address this

problem [3]. The consortium primarily focuses is on

standardizing technology and terminology related to

digital twins to promote their wider adoption across

industries. This effort reflects the growing

recognition of the potential benefits that digital

twins can offer in terms of improving product

design, manufacturing processes, asset

management, and overall system performance.

Digital twins create virtual representations of

physical objects, systems, or processes to monitor,

simulate, and optimize their behavior and

performance. These virtual representations are

continuously updated with real-time data, allowing

for better decision-making, predictive maintenance,

and enhanced domain efficiency.

Within the scope of Industry 4.0 and the amount

of data provided by the Internet of Things (IoT), it

is possible to compute a digital replica of a physical

asset. This so-called Digital Twin replica ideally

represents all the behaviors and functioning of the

physical twin. The high-fidelity Digital Twin model

of physical assets can produce system data close to

physical reality, which offers extraordinary

opportunities for forecasting, simulation, and

diagnosis of asset failures. Moreover, in forecasting

Digital Twins can be used to optimize the energy

consumption of assets, reducing operational costs

and environmental impact. They help in fine-tuning

parameters for optimal performance while

minimizing energy usage.

In this context, this work investigates different

forecasting techniques used to build a real-world

Industry 4.0 application using concepts of Digital

Twins, comparing such methods with real data

collected from a temperature sensor during the

initial stages of a manufacturing process. As

described in Figure 2, sensor data is collected from

an industry and its data is consolidated into an IoT

Hub to be used as inputs for the different digital

twin’s models that are generated from the selected

assets of the chosen industry. Finally, this data is

presented to the end users as dashboards, graphs,

and reports informing them of the real and

predicted condition of the equipment.

Figure 2 – Digital Twins applications diagram

Source: Author

The paper is organized as follows. Section 2

outlines the related work on time series forecasting.

Section 3 discusses the materials and methods of

this article with the results of each selected

forecasting method. Section 4 presents a

comparison of the results of the selected methods.

Section 5 offers the study’s conclusion and list

different areas that can be used for future works.

2 BACKGROUND AND RELATED

WORKS

2.1 TIME SERIES PREPROCESSING

Univariate time series data, characterized by a

sequence of observations recorded at successive

Revista de Engenharia e Pesquisa Aplicada, v.9, n. 1, p. 28-40, 2024

30

time points, find applications in diverse domains,

including finance, healthcare, meteorology, and

industrial processes. Before employing advanced

analysis and forecasting methods, it is crucial to

effectively preprocess the data to enhance its

quality, remove noise, and ensure reliable results

[4], [5], [6].

Outliers, extreme values that deviate

significantly from the general trend of the data, can

distort statistical analyses and modeling efforts.

Techniques such as z-score-based [7] methods can

help identify and remove these outliers, ensuring

the accuracy of subsequent studies.

IoT-generated time series data can exhibit

outliers due to various factors including sensor

malfunctions, transient disturbances, or even cyber-

attacks. Identifying these outliers is crucial, as they

can distort the temporal patterns important to

accurate predictions in IoT systems.

The mean absolute deviation (MAD) which its

formula is described in equation 1, emerges as a

powerful approach to detecting outliers within time

series data [7]. Given IoT data’s dynamic and

evolution, the MAD method accounts for the

absolute deviations of individual data points from

the median of the entire time series. This

adaptability is particularly valuable in IoT scenarios,

where outliers might emerge from previously

unseen events or irregularities.

𝑀𝐴𝐷 =
∑|xi−𝑥|

𝑛
 (1)

The values identified as outliers were removed

from the time series and the gaps created after the

removal were filled using linear interpolation.

Missing values are expected in time series data and

can arise for various reasons. Imputing missing

values is essential to ensure a continuous and

complete time series for analysis. Linear

interpolation is widely used to estimate missing

values based on neighboring observations and is a

widely used method [8].

Time series data often vary in scale and

magnitude, leading to biased analyses and

misleading interpretations. Normalization, whose

formula is described in equation 2, ensures that all

features are brought to a standard scale, eliminating

the dominance of high-scale variables in analyses

like clustering, classification, and regression. In the

formula, min and max values refer to the

normalization of the variable x, and y is the

normalized value.

𝑦 =
(𝑥−𝑚𝑖𝑛)

(𝑚𝑎𝑥−𝑚𝑖𝑛)
 (2)

It is essential to verify the time series

stationarity. The Augmented Dickey-Fuller (ADF)

[9] test is a widely used statistical test to

determine if a time series is stationary [10],

meaning that its statistical attributes remain

unchanged over the time.

Walk-forward validation using a sliding window

[11], represented in Figure 3 and known as rolling

validation or moving window validation, is a time

series cross-validation technique used to assess the

performance of time series forecasting models.

Unlike traditional cross-validation, where data is

randomly shuffled, maintaining the temporal order

of the data, which is crucial for time series analysis,

Walk-forward validation simulates the real-world

scenario of making sequential predictions as new

data becomes available over time.

Figure 3 – Walk Forward validation with a sliding

window.

Source: Author.

Walk-forward validation also considers the

model to be fitted every time the window is moved

forward along the time series. Still, since the

collected data from the sensor is a stationary time-

series, it is not necessary to re-fit the model. This

represents less computational requirements during

the execution of tests and during the usage of the

model in real-time with new data from the sensors.

A primary advantage of this method is that more

data is used to train and test the model without

having to use a validation set and without the risk

of overfitting [12].

2.2 FORECASTING METHODS

2.2.1 Baseline methods

As baseline methods, we considered the Naïve

and Naive Drift approaches. Both serve as reference

points for evaluating the performance of more

complex forecasting models. These methods

provide simple and straightforward predictions that

can be used to benchmark the effectiveness of

more sophisticated techniques.

A Comparative Study of Forecasting Methods in the Context of Digital Twins

DOI: 10.25286/repa.v9i1.2771
31

The Naive method predicts that the next value

will be the same as the last observed value using

the formula described in eq. 3 It assumes that there

is no change or trend in the data. The equation uses

the value for yt using the previous value yt-1of the

time series.

yt = yt-1 (3)

Naive Drift, or the Drift method, is a basic

forecasting technique that assumes a linear trend in

the time series data. It is an extension of the Naive

method, which predicts that the next value will be

the same as the last observed value. The Naive Drift

method, however, considers the time elapsed

between observations and adjusts the prediction

based on this elapsed time, effectively incorporating

a linear trend or drift into the forecast.

2.2.2 Statistical methods

Statistical forecasting uses historical data and

statistical techniques to predict time series values

and other data types.

The ARIMA (Auto Regressive Integrated Moving

Average) method was developed and introduced in

the early 1970s [13]. The fundamental concepts

behind ARIMA were established by the statisticians

George E. P. Box and Gwilym M. Jenkins, and their

work is documented in the book titled ”Time Series

Analysis: Forecasting and Control”, which was first

published in 1970. This method is still being used

for time series forecasting due to its good results,

including forecasting using industrial sensor data

[14] [15] [16]. Another advantage of this method

is that it when only has limited historical data from

the sensors to use during the training phase [17].

2.2.3 Machine Learning

Machine learning can be used for univariate time

series forecasting by leveraging patterns and

relationships within historical data to predict future

values of a single variable over time.

Recurrent Neural Networks (RNNs) are artificial

neural network architecture that handle sequence

data, such as time series. Unlike traditional neural

networks that process each input individually, RNNs

have feedback connections, allowing previous

information to influence the processing of

subsequent inputs. The critical feature of RNNs is

their ability to maintain an internal memory or

hidden state, which is updated with each new input

and influences future processing. This memory

enables RNNs to capture long-term dependencies in

data sequences, making them particularly useful in

situations when the previous context is relevant for

understanding the current context.

In the paper [18], Hochreiter and Schmidhuber

proposed the LSTM architecture to solve the

vanishing gradient problem that can occur in

traditional recurrent neural networks (RNNs). The

key element that gives the capability to capture

long-term dependencies to LSTM is called memory

block and described in Figure 4.

Figure 4 – LSTM diagram

Source: [19].

Due to this memory block, LSTMs can handle

long-range dependencies and capture patterns in

sequences over extended time intervals, making

them highly suitable for tasks involving sequential

data, such as time-series forecasting [19] [20]

[21] [22].

2.4 HYPERPARAMETERS SEARCH

Hyperparameter search is the process of finding

the best set of hyperparameters for a machine

learning model [23]. Hyperparameters are

parameters that control the learning process of the

model but are not learned from the data. Some

common examples of hyperparameters include the

learning rate, the number of epochs, and the

number of hidden layers in a neural network.

2.5 FORECASTING ACCURACY

Forecasting accuracy refers to the degree of

closeness between the predicted values from a

forecasting model and the real data of the target

variable. It measures how well a forecasting model

can accurately capture the underlying patterns,

trends, and variations in the data to make accurate

predictions of future values.

Revista de Engenharia e Pesquisa Aplicada, v.9, n. 1, p. 28-40, 2024

32

The forecast accuracy measures are always

calculated using test data that were not used when

computing the forecasts [24]. When using forecasts

that are on the same scale, the root mean square

error (RMSE) is one of the recommended methods

and it is defined using the formula in (4). In the

equation n is the number of observations, 𝑦𝑖 is the

real observed value at time, and 𝑦�̂� is the predicted

value at time 𝑖.

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1 (4)

3 MATERIALS AND METHODS

This section provides a comprehensive overview

of the executed steps. It begins with data loading,

followed by preprocessing. Next, we delve into

training using four distinct methods. Finally, we

present the results obtained from these methods.

3.1 DATA SET

The first step executed during this study was to

perform the data preprocessing required on the

collected data from the industrial sensors. The

collected sensor data was saved in a CSV file,

including the timestamp and temperature

attributes. The dataset range starts from 00:00 of

1st of June of 2022, to 23:59 of June 29, 2022 with

a total of 88,741 sensor readings. This represents

an average of 3,060 readings per day.

The data from this CSV was loaded as a time

series and plotted using a Python data visualization

library called Matplotlib [26] to execute the first

visual inspection and analysis. During this first

visual inspection of Figure 6, it was possible to see

a similar behavior of the time series along the

collected period, indicating the time series could be

identified as stationary and requiring a stationarity

test to be executed [9].

3.2 PREPROCESSING

The subsequent step involved identifying outliers

using mean absolute deviation (MAD), eliminating

them, and then employing linear interpolation to fill

the gaps left in the time series due to these

removals. This process detected and replaced 1,031

outliers in the time series and can be visualized in

Figure 7. The total length of the time series was not

affected because all removed outliers were replaced

using linear interpolation.

Another executed step was to verify the time

series stationarity to validate this hypothesis

identified in the visual inspection after plotting the

time series. The Augmented Dickey–Fuller (ADF)

[9] test was executed and confirmed the collected

sensor data created a stationary time series. The

ADF test returned a p-value equals to

3.408511793361129e−29, and since this value is

less than or equal to 0.05, H0 was rejected, and

stationarity was confirmed.

The data set was then split into training and test

data sets. The division of 80/20 was used to split,

meaning the training data set was created with

80% of the values total and test 20%. Their sizes

were 70,992 and 17,749 sensor readings. After this

split, both data sets were normalized as described

in section 2.1 using the normalization parameters

obtained from the training data set. The result of

this step can be observed in Figure 8.

3.3 EXPERIMENTAL METHODOLOGY

The forecast range selected in our experiments

was from one step forward to ten steps. The

forecasting used walk-forward validation with a

sliding window described in Figure 3. The sliding

window size was set according to the forecasting

range for each iteration of the test. This means the

executed test was repeated 10 times with different

forecasting ranges, varying from 1 to 10.

The first baseline forecasting method executed

was the Naive forecast. The forecast horizon

selected for this method was from one step to ten

steps forward. The forecast was executed using the

test data set for each different value of the forecast

horizon and always using the previous observed

value to determine the forecasted values. The

accuracy of this method is presented in Table 1.

A Comparative Study of Forecasting Methods in the Context of Digital Twins

DOI: 10.25286/repa.v9i1.2771
33

Figure 6 – Raw data from temperature sensor.

Source: Author.

Figure 7 – Outliers detection using MAD.

Source: Author.

Revista de Engenharia e Pesquisa Aplicada, v.9, n. 1, p. 28-40, 2024

34

Figure 8 – Normalized training and test datasets.

Source: Author.

A Comparative Study of Forecasting Methods in the Context of Digital Twins

DOI: 10.25286/repa.v9i1.2771
35

Table 1 – Naive Forecasting RMSE.

Forecast

horizon

RMSE

1 step 0.020107

2 steps 0.028467

3 steps 0.035618

4 steps 0.040981

5 steps 0.047885

6 steps 0.053208

7 steps 0.054365

8 steps 0.059190

9 steps 0.064050

10 steps 0.069753

Source: Author.

The following executed forecasting method was

Naive Drift and the same forecasting horizons from

the previous method were also used in this one as

well. For this method, different subsets of the

training data set were used to verify if smaller

training subsets can speed up the training phase

without compromising the accuracy of the forecasts.

The training data sets were tested using the lengths

described in Table 2.

Table 2 – Training data set lengths used for in models.

Training data set lengths

50

100

500

1000

10,000

20,000

50,000

70,000

Source: Author.

After some preliminary experiments, the best

accuracy with the lower RMSE was observed with

50,000 values from the training data set. Using the

complete data set or more significant amounts was

unnecessary to achieve better accuracy for this

forecasting method. The result of this method was

very similar when compared to the previous

method, Naive, even having much more data being

used for the training compared to Naive since it only

uses the previous n readings. One of the possible

reasons for this is due to the high-frequency nature

of the time series used in this experiment, which

helps in the first method. The RMSE for this method

is described in Table 3.

Table 3 – Naive Drift Forecasting lowest RMSEs.

Forecast

horizon

RMSE

1 step 0.020107

2 steps 0.028467

3 steps 0.035619

4 steps 0.040982

5 steps 0.047886

6 steps 0.053210

7 steps 0.054367

8 steps 0.059192

9 steps 0.064053

10 steps 0.069757

Source: Author.

Auto ARIMA was also executed with the same

data set and the same forecasting horizons as the

previous method. The length of the training data set

was also tested using the different values defined in

Table 2, using the same approach as the Naive Drift

method that was previously executed. As was

initially expected, this method resulted in better

accuracy than the baseline methods. Moreover,

according to Table 7 some scenarios of multistep

ahead required less training to obtain better

accuracy. The RMSE of this method is described in

Table 4 and Table 7, the latter includes the length

of the training data set that resulted in the lowest

RMSE value. For this method, the StatsForecast

[26] Python library was used.

Table 4 – Auto ARIMA Forecasting lowest RMSEs.

Forecast

Horizon

RMSE

1 step 0.018433

2 steps 0.026235

3 steps 0.033717

4 steps 0.039248

5 steps 0.043817

6 steps 0.051401

7 steps 0.052531

8 steps 0.055412

9 steps 0.064519

10 steps 0.066474

Source: Author.

After completing the tests with the baselines and

statistical methods, the same data set was

executed using a Long Short-Term Memory (LSTM)

recurrent neural network [18]. This model was

selected because of its ability to capture long-range

Revista de Engenharia e Pesquisa Aplicada, v.9, n. 1, p. 28-40, 2024

36

dependencies [18] and due to this it can effectively

handle sequential data such as time-series, which is

the case in the dataset being used in this study.

The first executed step was the hyperparameters

tuning. This was done using an open-source Python

package for hyperparameter optimization

framework named Optuna [23] that allows to

dynamically define the hyperparameters search

space to find its optimal values. The

hyperparameters search was executed using the

following ranges.

• Number of layers: 1 - 100

• Size of hidden layer: 1 - 250

• Dropout: 0.0 – 0.9

• Epochs: 1 - 999

As a result of this search, the following values

were found and used in the LSTM model:

• Number of layers: 1

• Size of hidden layer: 11

• Dropout: 0.12491736459588197

• Epochs: 405

• Learning Rate: 1e-3

• Optimizer Class: Adam

The RMSE obtained by this method can be

visualized in Table 5.

Table 5 – LSTM Forecasting lowest RMSEs.

Forecasting

Horizon

RMSE

1 step 0.016199

2 steps 0.020448

3 steps 0.025473

4 steps 0.028625

5 steps 0.031311

6 steps 0.035913

7 steps 0.036612

8 steps 0.038325

9 steps 0.044608

10 steps 0.044678

Source: Author.

4 RESULTS COMPARISON

The first step was to verify with the Friedman test

[28] if there is significant statistical difference

observed across the collected values or if they could

have occurred by chance. The test returned p-value

rejecting the null hypothesis of the test, meaning

there are significant differences among the

obtained RMSEs from each method.

Then, a comparison between the selected

methods using the lowest RMSE values collected for

each forecast horizon regardless of the length of the

training data set, which means that the optimal size

of the training data set was used in this first

comparison. As presented in Table 6, LSTM

outperformed the other methods in all different

forecasting horizon scenarios. Auto ARIMA was the

second on the list followed by Naive Drift and Naïve,

which obtained similar values for the RMSE. LSTM

outperformed Auto ARIMA by an average of 4.83%.

Auto ARIMA outperformed Naive Drift and Naive by

an average of 21.30%.

Figure 9 and 10 shows the comparison among

all selected methods to their forecasting time. The

first image presents the amount of time that each

method took to execute the forecasting for all

horizons. The second image presents the average

time for each forecasting step, also in horizons.

It was also observed in Figure 11 that LSTM

underperforms statistical methods when using

small training data sets. The same figure shows

that the LSTM outperforms the other selected

methods only when the training data set contains

at least 500 sensor readings.

Table 6 – Lowest RMSE for each method

Forecast

Horizon

Naive Naive

Drift

Auto

ARIMA

LSTM

1 step 0.020107 0.020107 0.018433 0.016199

2 steps 0.028467 0.028467 0.026235 0.020448

3 steps 0.035618 0.035619 0.033717 0.025473

4 steps 0.040981 0.040982 0.039248 0.028625

5 steps 0.047885 0.047886 0.043817 0.031311

6 steps 0.053208 0.053210 0.051401 0.035913

7 steps 0.054365 0.054367 0.052531 0.036612

8 steps 0.059190 0.059192 0.055412 0.038325

9 steps 0.064050 0.064053 0.064519 0.044608

10 steps 0.069753 0.069757 0.066474 0.044678

Source: Author.

A Comparative Study of Forecasting Methods in the Context of Digital Twins

DOI: 10.25286/repa.v9i1.2771
37

Figure 9 –Forecasting time for the test data set.

Source: Author.

Figure 10 –Average forecasting time for the test data set.

Source: Author.

Figure 11 –Training data set size and obtained RMSEs.

Source: Author.

Revista de Engenharia e Pesquisa Aplicada, v.9, n. 1, p. 28-40, 2024

38

Table 7 – Obtained RMSEs from each method.

 Training data set size 1 step 2 steps 3 steps 4 steps 5 steps 6 steps 7 steps 8 steps 9 steps 10 steps

Naive 1
0.020107 0.028467 0.035618 0.040981 0.047885 0.053208 0.054365 0.05919 0.06405 0.069753

Naive

Drift

50 0.020400 0.029124 0.036678 0.042643 0.050232 0.056143 0.057993 0.063645 0.069447 0.075362

100 0.020334 0.028941 0.036366 0.042114 0.049424 0.055155 0.056715 0.062143 0.067444 0.073534

500 0.020139 0.028536 0.035734 0.041155 0.048135 0.053507 0.054738 0.059608 0.064577 0.070373

1000 0.020119 0.028494 0.035665 0.041055 0.047992 0.053333 0.054525 0.059378 0.064286 0.070024

10000 0.020108 0.028469 0.035623 0.040988 0.047895 0.053221 0.054380 0.059208 0.064074 0.069783

20000 0.020108 0.028468 0.035620 0.040984 0.047889 0.053214 0.054372 0.059198 0.064059 0.069765

50000 0.020107 0.028467 0.035619 0.040982 0.047886 0.053210 0.054367 0.059192 0.064053 0.069757

70000 0.020107 0.028467 0.035619 0.040982 0.047886 0.053210 0.054367 0.059192 0.064053 0.069757

Auto

ARIMA

50 0.020198 0.027358 0.036033 0.041232 0.045591 0.053542 0.055194 0.058626 0.069206 0.070652

100 0.020344 0.027283 0.035671 0.040611 0.044248 0.052001 0.053055 0.055851 0.066770 0.067413

500 0.019885 0.026753 0.035506 0.040480 0.043868 0.052237 0.053069 0.055437 0.067446 0.066761

1000 0.020512 0.028126 0.037854 0.042742 0.046243 0.055927 0.054748 0.056872 0.072260 0.067181

10000 0.019330 0.026405 0.034969 0.039948 0.043817 0.052047 0.052531 0.055613 0.066379 0.066474

20000 0.018687 0.026366 0.033781 0.039364 0.044503 0.051401 0.053059 0.055412 0.064960 0.066532

50000 0.018433 0.026235 0.033717 0.039248 0.044366 0.051544 0.052647 0.055710 0.064519 0.066596

70000 0.018586 0.026338 0.033968 0.039474 0.044390 0.051764 0.052942 0.055598 0.065215 0.066498

LSTM

50 0.045923 0.057969 0.072213 0.081149 0.088763 0.101809 0.103791 0.108647 0.126457 0.126655

100 0.031239 0.039433 0.049122 0.055201 0.060381 0.069255 0.070603 0.073907 0.086022 0.086157

500 0.018736 0.023650 0.029461 0.033107 0.036214 0.041536 0.042345 0.044326 0.051592 0.051673

1000 0.019192 0.024226 0.030179 0.033914 0.037096 0.042548 0.043376 0.045406 0.052849 0.052932

10000 0.018335 0.023144 0.028831 0.032399 0.035439 0.040647 0.041439 0.043378 0.050488 0.050567

20000 0.017225 0.021743 0.027086 0.030438 0.033294 0.038187 0.038931 0.040752 0.047433 0.047507

50000 0.016262 0.020527 0.025571 0.028736 0.031432 0.036051 0.036753 0.038473 0.044780 0.044850

70000 0.016199 0.020448 0.025473 0.028625 0.031311 0.035913 0.036612 0.038325 0.044608 0.044678

Source: Author.

A Comparative Study of Forecasting Methods in the Context of Digital Twins

DOI: 10.25286/repa.v9i1.2771
39

5 CONCLUSIONS

In this work, we present different forecasting

techniques used to build a real-world Industry 4.0

application using concepts of Digital Twins. This

experiment used real data collected from a

temperature sensor during the initial stages of a

manufacturing process were used.

The provided results contain information to

conclude that LSTM obtained a better outcome for

the RMSE when using large training data sets. LSTM

got similar or lower results when working with a

small training data set. This means that LSTM must

be carefully selected depending on the amount of

data available to train the model. Moreover, Figure

9 and 10 shows LSTM taking more processing time

than the other selected methods in the forecasting

phase. It also adds an extra step in the process:

which is the hyperparameters search before fitting

the model.

It is also clear that, despite the discussed

drawbacks of using LSTM models, its accuracy gains

can have a significant positive impact, especially in

the context of Digital Twins and industrial

applications [29]. The following points can be

observed:

• Accuracy Gains: LSTM models are known for

capturing sequential patterns and

dependencies in data, making them valuable

for time series forecasting and predictive

modeling. Given that it resulted in improved

accuracy, it can lead to more reliable

predictions and decision-making. According to

the results presented in this work, LSTM

outperformed Auto ARIMA by an average of

4.83%, which be enough to avoid equipment

faults and reduced maintenance tasks.

• Reduced Resource Usage: By achieving

more accurate predictions, the usage of

industrial, such as natural gas and electricity,

can be optimized. This means that utility

resources can be used more efficiently,

potentially reducing costs, minimizing waste,

and reducing the environmental impact.

• Financial Impact: Even small gains in RMSE

can translate to significant cost savings in an

industrial environment. This is particularly

crucial in industries where energy

consumption, resource utilization, and

operational efficiency are closely monitored

and directly impact on the bottom line.

In summary, despite the potential drawbacks of

using LSTM models, their ability to enhance

accuracy and, consequently, reduce resource

consumption and costs can make them a valuable

tool in the context of Digital Twins and industrial

operations. However, it's important to continue

refining and fine-tuning these models to mitigate

their limitations and maximize their benefits.

The following topics can be used for future work

around the subject of this paper.

• How to identify the most optimal length of the

training data set without having to test different

lengths?

• Execute comparisons using different multi-step

ahead forecast strategies, such as recursive,

direct and hybrid.

• Execute forecasting using multivariate

timeseries by using information from other

digital twin’s sensor data and its geolocations.

With the objective to predict failures and reduce

utility consumption.

REFERENCES

[1] GRIEVES, Michael; VICKERS, John. Origins of

the digital twin concept. Florida Institute of
Technology, v. 8, p. 3-20, 2016.

[2] ATTARAN, Mohsen; CELIK, Bilge Gokhan.
Digital Twin: Benefits, use cases, challenges,
and opportunities. Decision Analytics
Journal, p. 100165, 2023.

[3] OLCOTT, S.; MULLEN, C. Digital twin
consortium defines digital twin. Available at:
blog.digitaltwinconsortium.org/2020/12/
digital-twin-consortium-defines-digital-
twin.html, 2020.

[4] BLÁZQUEZ-GARCÍA, Ane et al. A review on
outlier/anomaly detection in time series

data. ACM Computing Surveys (CSUR), v.

54, n. 3, p. 1-33, 2021.

[5] KHAYATI, Mourad et al. Mind the gap: an

experimental evaluation of imputation of
missing values techniques in time series.

In: Proceedings of the VLDB Endowment.

2020. p. 768-782.

[6] LIMA, Felipe Tomazelli; SOUZA, Vinicius MA. A

Large Comparison of Normalization Methods

on Time Series. Big Data Research, v. 34,
p. 100407, 2023.

Revista de Engenharia e Pesquisa Aplicada, v.9, n. 1, p. 28-40, 2024

40

[7] LEYS, Christophe et al. Detecting outliers: Do
not use standard deviation around the mean,
use absolute deviation around the
median. Journal of experimental social
psychology, v. 49, n. 4, p. 764-766, 2013.

[8] TROYANSKAYA, Olga et al. Missing value
estimation methods for DNA
microarrays. Bioinformatics, v. 17, n. 6, p. 520-
525, 2001.

[9] MUSHTAQ, Rizwan. Augmented dickey fuller

test. 2011.

[10] FULLER, Wayne A. Introduction to

statistical time series. John Wiley & Sons,
2009.

[11] VAFAEIPOUR, Majid et al. Application of

sliding window technique for prediction of
wind velocity time series. International

Journal of Energy and Environmental

Engineering, v. 5, p. 1-7, 2014.

[12] BERGMEIR, Christoph; BENÍTEZ, José M. On

the use of cross-validation for time series
predictor evaluation. Information Sciences,

v. 191, p. 192-213, 2012.

[13] BOX, G.E.P.; JENKINS, G. M.; REINSEL, G.
C. Time series analysis: forecasting and
control. John Wiley & Sons, 2011.

[14] KANAWADAY, A.; SANE, A. Machine learning

for predictive maintenance of industrial

machines using IoT sensor data. In: 2017

8th IEEE international conference on
software engineering and service science

(ICSESS). IEEE, 2017. p. 87-90.

[15] ZHANG, Weishan et al. LSTM-based analysis

of industrial IoT equipment. IEEE Access, v.

6, p. 23551-23560, 2018.

[16] MANI, Geetha; VOLETY, Rohit. A comparative

analysis of LSTM and ARIMA for enhanced
real-time air pollutant levels forecasting using

sensor fusion with ground station

data. Cogent Engineering, v. 8, n. 1, p.
1936886, 2021.

[17] ELSARAITI, Meftah; MERABET, Adel; AL-

DURRA, Ahmed. Time Series Analysis and
Forecasting of Wind Speed Data. In: 2019

IEEE Industry Applications Society

Annual Meeting. IEEE, 2019. p. 1-5.

[18] HOCHREITER, Sepp; SCHMIDHUBER,
Jürgen. Long short-term memory. Neural
computation, v. 9, n. 8, p. 1735-1780, 1997.

[19] CHHAJER, Parshv; SHAH, Manan;

KSHIRSAGAR, Ameya. The applications of

artificial neural networks, support vector

machines, and long–short term memory for
stock market prediction. Decision Analytics

Journal, v. 2, p. 100015, 2022.

[20] TAN, Mao et al. Ultra-short-term industrial

power demand forecasting using LSTM based

hybrid ensemble learning. IEEE
transactions on power systems, v. 35, n.

4, p. 2937-2948, 2019.

[21] ZHANG, Weishan et al. LSTM-based analysis

of industrial IoT equipment. IEEE Access, v.

6, p. 23551-23560, 2018.

[22] COOK, Andrew A.; MISIRLI, Göksel; FAN,

Zhong. Anomaly detection for IoT time-series

data: A survey. IEEE Internet of Things
Journal, v. 7, n. 7, p. 6481-6494, 2019.

[23] AKIBA, Takuya et al. Optuna: A next-generation
hyperparameter optimization framework.
In: Proceedings of the 25th ACM SIGKDD
international conference on knowledge
discovery & data mining. 2019. p. 2623-
2631.

[24] HYNDMAN, Rob J. Measuring forecast

accuracy. Business forecasting: Practical
problems and solutions, p. 177-183, 2014.

[25] HYNDMAN, Rob J.; KOEHLER, Anne B.

Another look at measures of forecast
accuracy. International journal of

forecasting, v. 22, n. 4, p. 679-688, 2006.

[26] HUNTER, John D. Matplotlib: A 2D graphics
environment. Computing in science &

engineering, v. 9, n. 03, p. 90-95, 2007.

[27] GARZA, Federico et al. StatsForecast:
Lightning fast forecasting with statistical and
econometric models. PyCon: Salt Lake City,
UT, USA, 2022.

[28] FRIEDMAN, Milton. A comparison of

alternative tests of significance for the

problem of m rankings. The annals of

mathematical statistics, v. 11, n. 1, p. 86-

92, 1940.

[29] CHOI, Eunjeong; CHO, Soohwan; KIM, Dong

Keun. Power demand forecasting using long
short-term memory (LSTM) deep-learning

model for monitoring energy

sustainability. Sustainability, v. 12, n. 3, p.
1109, 2020.

