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ABSTRACT

Severe Acute Respiratory Syndrome (SARS) continues to pose a
substantial public health challenge in Brazil, with prolonged
hospitalizations increasing pressure on healthcare resources. This study
utilized Brazil's national SIVEP-Gripe surveillance system, a
comprehensive repository of anonymized, individual-level records for
SARS cases including influenza and other respiratory viruses, to develop
and evaluate machine learning models. Using data from 2024, we
constructed a preprocessed dataset consisting of 64,238 hospitalized
patient records. This dataset was built using 32 independent variables, all
of which are available at the time of patient admission. The focus of this
dataset is to predict prolonged hospital length of stay (PLOS > 7 days).
Three ensemble tree-based algorithms—Random Forest, XGBoost, and
CatBoost—were trained after data preprocessing and robust imputation,
using stratified 5-fold cross-validation with AUC maximization. The
models exhibited moderate but consistent predictive performance, with
AUC values around 0.65. XGBoost achieved the best balance between
sensitivity and specificity, while Random Forest achieved higher recall for
prolonged-stay cases. Explainable AI analysis using SHAP values revealed
asthma, age, oxygen saturation, and geographic region as the most
influential predictors. These findings underscore the potential of
explainable machine learning approaches to support early hospital
resource planning using routinely collected surveillance data. Future
research should incorporate dynamic and clinical progression variables to
further enhance predictive performance and real-world applicability.

KEY-WORDS: Severe Acute Respiratory Syndrome; Explainable
Artificial Intelligence; Machine Learning; Hospital Length of Stay;
Prolonged Hospitalization.
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A Data-Driven and Explainable Machine Learning Approach to Predict Prolonged Hospitalization in

Brazilian SARS Patients

1 INTRODUCTION

Severe acute respiratory syndrome (SARS) poses
a major global public health challenge, significantly
increasing morbidity, mortality, and healthcare
burdens, especially among vulnerable groups like
young children and the elderly. In Brazil, SARS
surveillance is primarily conducted through the
SIVEP-Gripe (Sistema de Informacdo da Vigilancia
Epidemioldgica da Gripe) system. This system has
been instrumental in monitoring the circulation of
various respiratory pathogens, and most notably
since 2020, SARS-CoV-2, the causative agent of
COVID-19.

The COVID-19 pandemic has highlighted the
critical importance of early risk stratification and
efficient hospital resource management, particularly
in low- and middle-income countries [1]. In this
context, the surveillance of SARS remains a key
component of Brazil's public health monitoring
strategy. Despite advancements, length of stay
(LOS) prediction research remains fragmented and
often specific to individual hospitals, lacking broad
applicability [2]. Prolonged Length of Stay (PLOS) in
hospitalized patients with SARS is a critical concern,
associated with increased healthcare costs, higher
risk of nosocomial infections, greater patient
morbidity, and strained hospital resources [3].
Identifying patients at high risk for PLOS early in
their hospital course can enable targeted
interventions, optimize resource allocation, and
potentially improve outcomes.

While numerous studies have characterized the
clinical and epidemiological features of SARS in
Brazil [9][10], a significant gap exists in developing
predictive models for PLOS using only data available
at hospital admission. Previous research on COVID-
19 has identified various predictors for hospital stay
duration, such as respiratory parameters, laboratory
markers, and patient demographics [1, 4-7], but
these have not been synthesized into a broadly
applicable model for the Brazilian SARS population.

A key challenge was rigorously preparing the raw,
heterogeneous SIVEP-Gripe data for modeling. The
complex dataset used numerical or character codes,
requiring extensive cleaning and decoding via a data
dictionary. Missing data—coded as '‘ignored' or
'unknown'—necessitated a careful imputation
strategy. Importantly, all data cleaning and feature
engineering steps were constrained to variables
available at hospital admission, a crucial constraint
for developing an early-prediction model. This

meticulous process of handling data heterogeneity,
cleaning inconsistencies, and strategically imputing
missing values was fundamental to constructing a
reliable dataset for the subsequent modeling and
validation phases.

Machine learning (ML) approaches are well-
suited to address the heterogeneity of data. They
can analyze complex, high-dimensional datasets,
such as SIVEP-Gripe, to identify subtle patterns
among patient characteristics that contribute to
prolonged hospitalization. However, the "black box"
nature of some complex ML models can hinder
clinical adoption due to a lack of transparency. This
has driven interest in Explainable Artificial
Intelligence (XAI), which provides the
interpretability and transparency necessary for
clinical applications [7]. By making model
predictions understandable, XAI can foster trust
and facilitate the integration of ML tools into
healthcare decision-making.

Therefore, this study develops and evaluates
machine learning models to predict prolonged
length of stay (PLOS) in hospitalized SARS patients
using Brazil's SIVEP-Gripe system. While PLOS is
commonly defined as exceeding the median LOS
[16] (6 days in our dataset), we used >7 days for
a more conservative threshold to identify high-
resource cases. By analyzing demographic, clinical,
and comorbidity data available at admission, we
aimed to identify key predictors of prolonged
hospitalization and evaluate various modeling
techniques. The insights gained could enhance
clinical decisions and public health strategies,
leading to better patient outcomes and more
efficient healthcare resource management. This
study presents a reproducible and interpretable
data science workflow applied to public health data,
highlighting the challenges of missing data, model
selection, and explainability.

The remainder of this manuscript is structured
as follows: Section 2 presents the background
necessary for work understand. Section 3 details
the materials and methods, including data
description, preprocessing, feature engineering,
model development, and evaluation strategy.
Section 4 reports the results of exploratory data
analysis, model performance, and explainability
using SHAP values. Section 5 discusses the study’s
limitations, and Section 6 concludes with key
findings and directions for future work.
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2 BACKGROUND

Severe acute respiratory syndrome (SARS) is
characterized by fever, cough or sore pain, alongside
shortness of breath or oxygen saturation levels
below 95% [15]. These conditions may lead to
hospitalization or result in fatal outcomes,
regardless of admission status.

Length of stay (LOS) is a critical healthcare
metric, alongside mortality and readmission rates,
for patient care and resource optimization [7].
Prolonged LOS (PLOS) is an adverse outcome that
modern predictive models aim to forecast early.
PLOS imposes a significant economic and
operational strain on global healthcare systems. In
Brazil, where public hospitals often operate at near
capacity, extended LOS has a direct impact on the
Sistema Unico de Salde (SUS), diminishing
efficiency and escalating costs related to intensive
care, comorbidities, and readmissions [3].
Consequently, precise prediction of PLOS is
imperative for optimizing hospital management,
predicting resource requirements, and guiding
public health policy.

Machine learning (ML) has emerged as a powerful
tool for modeling LOS, owing to its capacity to
discern intricate, nonlinear relationships among
patient demographics, comorbidities, and clinical
indicators. Clinical data-driven frameworks exhibit
superior predictive performance for PLOS, with tree-
based ML models achieving notably high accuracy
[7]. However, the inherent lack of transparency in
some ML models—the so-called 'black box' issue—
has hindered their clinical acceptance. To address
this challenge, Explainable Artificial Intelligence
(XAI) techniques are increasingly used in healthcare
to bolster model transparency and foster trust [17].

Explainable Artificial Intelligence (XAI)
methodologies are gaining traction in predicting
PLOS risk. Among the most prevalent XAI methods
are: (1) SHAP (SHapley Additive exPlanations) [8],
which elucidates model outputs by attributing them
to feature contributions using cooperative game

higher than 7 days) in Brazilian SARS patients using
admission data, and employing XAI techniques to
enhance model interpretability and clinical
relevance.

3 MATERIALS AND METHODS

This study's methodology for predicting PLOS
followed a sequential data-processing pipeline, as
illustrated in Figure 1.

The process started with the acquisition and
cleaning of data from the national surveillance
system, ensuring data quality and consistency.
Subsequently, a feature engineering phase was
conducted to select and transform the most
relevant variables from the cleaned dataset. The
final, engineered dataset then served as the
foundation for the modeling and validation stages,
where machine learning algorithms were trained
and evaluated.

Figure 1 - Data Science Workflow of the PLOS
Prediction Pipeline.
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theory principles; and (2) LIME (Local Interpretable
Model-agnostic Explanations) [11], which
approximates complex models with simpler,
interpretable models on a local scale. Explanations
generated through XAI, often via SHAP, pinpoint
influential predictors for PLOS risk, thereby aiding
clinicians in comprehending the underlying
determinants of extended hospital stays.

This study builds upon these foundations by
developing ML models to predict PLOS (defined as
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3.1 DATA DESCRIPTION

The study utilized data from the SIVEP-Gripe
(Sistema de Informacao da Vigilancia
Epidemiolégica da Gripe) system, a Brazilian
national surveillance platform for SARS. The dataset
was obtained from the official Brazilian Ministry of
Health's open data portal.

This comprehensive dataset contains
anonymized individual-level records of SARS cases,
including influenza and other respiratory viruses,
notably COVID-19. Each record encompasses a wide
array of variables covering patient demographics,
clinical presentation, comorbidities, vaccination
history, hospitalization details, diagnostic test
results, and case outcomes. The raw data are semi-
structured and coded (numerically or with
characters), requiring a data dictionary for
interpretation.

3.2 DATA PREPARATION

For this study, the initial dataset was filtered to
include only patients who were hospitalized due to
SARS, identified by the HOSPITAL variable (Value:
1 = Yes). The analysis focused on admissions
occurring between January 1, 2024, and January 1,
2025, based on the DT_INTERNA (admission date)
field. The primary outcome, Prolonged Length of
Stay (PLOS), was derived from DT_INTERNA and
DT_EVOLUCA (outcome date), defined as a hospital
stay exceeding 7 days.

Table 1 presents the features selected for
predictive modeling, along with their coding
according to the SIVEP-Gripe data dictionary. The
selection criteria were that only variables available
at admission were included, to develop a model for
early risk stratification.

3.3 DATA PREPROCESSING

Data were programmatically retrieved and
imported into a pandas DataFrame for subsequent
analysis, using Latin-1 encoding and
low_memory=False to ensure accurate type
inference for all columns. Initial preprocessing
focused on preparing the date-related fields.
Columns representing key dates, including
admission date (DT_INTERNA) and outcome date
(DT_EVOLUCA) were converted to datetime objects,
with any parsing errors coerced to NaT (Not a Time).

The study cohort was restricted to patients
recorded as hospitalized (HOSPITAL = 1).

The primary outcome variable, Length of Stay
(LOS), denoted as LOS_INT, was calculated as the
difference in days between outcome date and
admission date. To ensure data integrity, LOS_INT
was only computed for records where both dates
were present and DT_EVOLUCA was on or after
DT_INTERNA; other cases resulted in a NaN for
LOS_INT. For the purpose of predictive modeling,
LOS_INT was binarized into a target variable PLOS
(Prolonged Length of Stay), where PLOS = 1 if
LOS_INT > 7 days and PLOS = 0 otherwise. Records
with missing LOS_INT (and consequently PLOS)
were excluded. The analysis was further confined to
hospitalizations within the specified date range.

Table 1 - Description of Selected Variables.

Variable Code Description

Demographics and General Information

CS8_SEXO M. F. 1 Sex: Male (M). Female (F), Ignored, Missing (1

NU IDADE N Numeric Age in years

CS5_RACA 1-5,9 Race Ethnicity: 1 =White 2= Black 3= Asian
1=Mixed /Brown, 5=Indigenous, 9=Ilgnored /Missing

C5_ESCOL_N 0-9 Education level:

: No schooling /Illiterate

1: Incomplete Elementary (1st eyvele)
2: Complete Elementary (2st cycle)
3: Complete High School
e

mplete Higher Education

2 Ig
restational stabus:

CS5_GESTANT 1-6.9

Ist Trimester

9: Ignored /Missing

SG_UF_NOT A&

State of notification (two-letter Brazilian state code)

Climical Sympioms
FEBRE
TOSSE
GARGANTA
DISPNEIA
DESC_RESP

15 (1 =Yes, 2=No, 9=Ignored)
1
1
1
1
1
SATURACAO 1.
1
1
|
1
1
1

Fever

Cough

Sore throat

Dwyspnea | Shortness of breath
Respiratory distress
DIARREIA Diarrhea
VOMITO
FADIGA
DOR_ABD
PERD _OLFT
PERD_FALA

4]

]

1

1

]

9 0 saturation 05%
I

) Vemiting

1 Fatigue

1 Ahdominal pain

1 Loss of smell (dropped due to high correlation)
1

Loss of taste

Comorbidities (1= Yes, 2=No, 9=Ignored)

PUERPERA 129 Puerperium (postpartum period)
CARDIOPATI 1.29 Heart disease
HEMATOLOGT 1,29 Hematologic discase (dropped
SIND_DOWN 129

HEPATICA 1,29

ASMA 129

DIABETES 1,289

NEURDLOGIC 1.29

PNEUMOFATI 129 Other chronic |
IMUNODEPRE 1,29 Tmmunodeficien

RENAL 1.29 Chronic kidney disease
OBESIDADE 1,29 Dhesity

v [1=Ves, 2=No, I=Tgnored)
VACINA_COV 12 9 COVID-19 vaccination received
VACINA 1.2, 9 Seasonal influenza vaccination

Vacomation Staty

Source: Author.
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A curated set of features relevant to SARS patient
demographics, symptoms, comorbidities, and
vaccination status was selected for model
development. This selection was guided by domain
knowledge and common practices in SARS research.
Specifically, features included CS_SEXO (sex),
NU_IDADE_N (age in numbers), CS_RACA
(race/ethnicity), CS_ESCOL_N (education level)
CS_GESTANT  (gestational status), symptom
indicators (FEBRE, TOSSE, etc.), comorbidity flags
(CARDIOPATI, DIABETES, etc.), and vaccination
details (VACINA_COV, VACINA). The state of
notification (SG_UF_NOT) was also included for
potential regional analysis.

To handle missing data, we identified codes for
'ignored' 'not applicable' or 'unknown' (e.g., '9' for
categoricals) based on the documentation. For
original comorbidity columns, a binary flag
(col_missing_flag) was engineered for each,
indicating whether the original value was one of
these missing codes. This step was performed
before converting the missing codes themselves to
np.nan to preserve the information about original
missingness. This strategy allows the model to
potentially learn patterns from the act of data being
missing. After flag creation, the identified missing
codes in the original feature columns were replaced
with np.nan. Features identified as highly correlated
(> 80%) based on preliminary analysis (PERD_OLFT
and HEMATOLOGI) were removed (Figure 2).

Figure 2 - Pearson Correlation Matrix of Selected Features

i : Ilu

Pearson Correlation Matrix

Source: Author.

A robust preprocessing pipeline was constructed
using scikit-learn's ColumnTransformer. Numerical
features (NU_IDADE N) were imputed using
IterativeImputer and standardized using
StandardScaler. Nominal categorical features
(CS_SEXO, CS_RACA, SG_UF_NOT) were imputed
using the most frequent value and then one-hot
encoded.

The ordinal categorical features (CS_ESCOL_N
and CS_GESTANT) were also imputed with the most
frequent value, followed by OrdinalEncoder to
preserve its inherent order. Binary features
(symptoms and vaccine status) were imputed with
their most frequent value and then one-hot
encoded. The original comorbidity columns (e.g.,
CARDIOPATI, DIABETES), after their specific
missing codes were converted to np.nan, were
imputed using SimpleImputer (strategy="constant’,
fill_value=2), where "2’ typically represents "No" in
SIVEP-Gripe coding for comorbidities. This ensures
that if a comorbidity status was originally marked
as "Ignored" it is treated as "No" after imputation.
The engineered _missing flag columns, being
already binary (0 or 1), were passed through
without further transformation, assuming they
contained no NaNs after their creation.

The pipeline was fitted to training data and
applied to both sets to avoid leakage. Rows with
remaining NaN values were removed. The
substantial reduction in dataset size after applying
the imputation pipeline and subsequent removal of
NaN values is due to specific features, such as
comorbidities, that were not fully resolved by the
current imputation strategy.

3.4 MODEL
EVALUATION

DEVELOPMENT AND

The preprocessed dataset with 64,238 records
and 32 independent variables was split into training
(75%) and testing (25%) sets, stratified by the
PLOS target variable to maintain class proportions
in both splits (PLOS distribution: 0 = 55%, 1=
45%). A random_state was used for reproducibility.

To develop and evaluate machine learning
models for predicting Prolonged Length of Stay
(PLOS), three distinct algorithms were selected for
their robustness and common application in
healthcare predictive modeling [7]: RandomForest
[12], XGBoost [13], and CatBoost [14]. For
comparative purposes, a DummyClassifier using
the ’stratified’ strategy was employed to set a
minimum performance benchmark.
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Each model underwent hyperparameter tuning
using RandomizedSearchCV with 5-fold stratified
cross-validation, optimizing for the Area Under the
Receiver Operating Characteristic Curve (AUC). The
hyperparameter search space for each model was
intentionally kept concise, with only two candidates
explored for each parameter combination. The
hyperparameter search space was intentionally
restricced (n_iter=2) to facilitate a rapid
demonstration, acknowledging that a more
exhaustive  search might vyield additional
performance improvements.

The performance of the best model (identified by
RandomizedSearchCV) for each algorithm was then
evaluated on the unseen test set. Key metrics,
including accuracy, precision, recall, and AUC, were
calculated. Classification reports and confusion
matrices were also generated to provide a
comprehensive view of model performance.

3.5 EXPLAINABLE TECHNIQUE

SHAP (SHapley Additive exPlanations) [8] was
applied to interpret the top-performing model,
providing both global and local feature importance.
SHAP values were visualized via plot to identify the
most influential predictors. This approach provides
insights into the critical drivers of extended
hospitalization, delivering actionable information for
healthcare practitioners.

4 RESULTS

The following subsections presents the results of
the data, models performance and model outcome
explainability analyses. The discussion of the
obtained results will also be presented.

4.1 DATA ANALYSIS

Exploratory data analysis of 2024 hospitalized
SARS cases reveals key demographic and clinical
characteristics.

A bimodal age distribution highlights high
hospitalization rates in young children and older
adults (Figure 3). The sex distribution is nearly
balanced, with a slight male predominance.

Temporal trends show distinct epidemic waves,
likely reflecting influenza and COVID-19 seasonality
(Figure 4).

Common symptoms include cough, dyspnea, and
respiratory distress, while heart disease, diabetes,
and asthma are prevalent comorbidities (Figure 5).

Figure 3 - Age Distribution of Hospitalized Patients.
Distribution of Patient Age (Hospitalized SARI Cases)
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Figure 4 -Weekly Temporal Trends of Hospitalized SARS.
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Figure 5 - Frequency of the Most Common Symptoms.

o in Hespiialized SAR

Source: Author.

The fatality rate increases sharply with age,
particularly affecting the elderly, as shown in Figure
6. Common symptoms include cough, dyspnea, and
respiratory distress, and prevalent comorbidities
are heart disease, diabetes, and asthma, as
illustrated in Figure 7.

Figure 6 - Case Fatality Rate by Age Group.
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Case Faiabty Rale (CFR) by Age Group
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Figure 7 - Prevalence of Common Comorbidities.
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Source: Author.

The length of stay (LOS) is typically short, with a
median of 6 days and mean of 8.8 days, but has a
long tail of prolonged hospitalizations, as shown in
Figure 8.

Figure 8 - Distribution of Length of Stay in Days.
Distribution of Length of Stay (Capped at 48 days)
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Source: Author.

The geographical distribution of cases reflects
population density, with the five states reporting the
highest case counts being Sdo Paulo, Minas Gerais,
Parana, Rio de Janeiro, and Rio Grande do Sul, as
depicted in Figure 9.

Figure 9 - Geographic Distribution of Hospitalized
Cases.

|IIIII | |1 T [p——

Sourcé::{Author.
4.2 MODELS EVALUATION

The performance evaluation of the machine
learning classifiers was conducted to assess their
ability to predict prolonged hospital length of stay
(PLOS). Multiple complementary metrics—accuracy
(ACC), precision (Prec.), recall (Rec.), and the area
under the receiver operating characteristic curve
(AUC)—were employed to capture both overall
discrimination and class-specific behavior. These
indicators provide a comprehensive view of model
reliability, balancing correct predictions, sensitivity
to positive (PLOS) cases, and robustness against
false alarms. Table 2 presents the single set of
parameters found for all models by the limited
search.

Table 2 - Set of Parameters Models.

MODEL PARAMETERS
Random n_estimators=300,
Forest min_samples_split=5,

min_samples_leaf=4,
max_depth=30.

XGBoost n_estimators=300,
max_depth=3, learning_rate=0.1
CatBoost learning_rate=0.1,
iterations=300, depth=8
Source: Author.
Table 3 summarizes the comparative

performance of all machine learning models based
on accuracy (ACC), precision (Prec.), recall (Rec.),
and AUC metrics. The baseline DummyClassifier
achieved random-level performance (ACC = 0.50,
AUC = 0.50). Among the trained models, XGBoost
and CatBoost exhibited the highest overall accuracy
(ACC = 0.61 and 0.60, respectively) and AUC
values (0.66 for both), slightly outperforming
Random Forest (ACC = 0.61, AUC = 0.65).
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Table 3 - Comparative Performance of ML Models.
MODEL ACC Prec. Rec. AUC

DummyClassifier 0.50 0.45 0.45 0.50
Random Forest 0.61 0.55 0.66 0.65
XGBoost 0.61 0.58 0.49 0.66
Cat Boost 0.60 0.58 0.51 0.66

Source: Author.

In terms of precision, both XGBoost and CatBoost
(Prec. = 0.58) surpassed Random Forest (Prec. =
0.55), indicating fewer false positives. However,
Random Forest achieved the highest recall (Rec. =
0.66), suggesting superior sensitivity to prolonged
length-of-stay cases. Overall, the gradient-boosted
models demonstrated balanced and robust
predictive performance, while RandomForest
favored recall at the expense of precision.

Figure 10 presents the ROC curves and
corresponding confusion matrices for the three
classifiers—Random Forest, XGBoost, and CatBoost.
All models exhibit comparable overall
discrimination, with AUC values clustering around
0.65. These similar AUCs indicate that, under the
current feature set and limited hyperparameter
tuning, each algorithm learns similarly effective
decision boundaries.

The confusion matrices further quantify these
trade-offs at the selected classification threshold.
Random Forest correctly classifies more true PLOS
cases (higher recall) than the boosting models,
reflecting its sensitivity to positive instances. In
contrast, XGBoost achieves a higher number of true
negatives, indicating better specificity, while
CatBoost produces a nearly identical distribution of
true and false predictions compared to XGBoost.

Ultimately, model selection depends on the
relative costs of misclassification. Random Forest’s
higher recall makes it preferable when missing a
prolonged-stay case is especially costly, such as in
clinical triage, whereas XGBoost and CatBoost, with
their better precision and slightly higher overall
accuracy, are better suited when minimizing false
alarms is the priority.

For a balanced compromise between sensitivity
and specificity, XGBoost emerges as the most
suitable option, offering marginally superior AUC
and accuracy under these experimental conditions.

Figure 10 - Comparative Performance of ML Models.

Source: Author.

4.3 PREDICTIVE OUTCOMES OF
XGBOOST EXPLAINABILITY

To interpret which factors most influenced the
XGBoost model’s predictions for prolonged hospital
length of stay (PLOS = 1), global feature
importances were analyzed using SHAP values, as
illustrated in Figure 11.

The most influential predictor was the presence
of asthma comorbidity, underscoring its critical role
in the model’s decision-making process. Patient age
and oxygen saturation levels followed in
importance, emphasizing the relevance of both
demographic and physiological indicators in early
PLOS prediction.

Geographical attributes—particularly notification
states such as Sao Paulo and Parana—also ranked
among the top contributors, suggesting that
regional healthcare or reporting disparities may
influence patient outcomes. Additional relevant
features included neurological comorbidities, cough
symptoms, and chronic conditions such as
immunodeficiency, pneumopathy, and cardiopathy,
all of which align with known clinical risk factors for
severe respiratory syndromes.
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Figure 11 - Feature Importance for the XGBoost.

Global Feature Importances for XGBoost
(Mean |SHAP value| for predicting PLOS=1)
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Source: Author.

In summary, the results show that machine
learning models moderately predicted prolonged
hospital stays (PLOS) among SARS patients using
admission-time data from Brazil's SIVEP-Gripe
system. Consistent AUC values (around 0.65)
across Random Forest, XGBoost, and CatBoost
suggest that, despite limited features and minimal
tuning, ensemble methods captured clinically
meaningful patterns. The XGBoost model offered a

balanced trade-off between sensitivity and
specificity, while Random Forest prioritized recall,
making it particularly suitable for scenarios in which
missing prolonged-stay cases could have serious
operational implications.

From an interpretability perspective, SHAP
analysis highlighted asthma, age, and oxygen
saturation as key predictors, reflecting known links
between respiratory comorbidities, hypoxemia, and
adverse outcomes. The prominence of geographical
variables suggests that regional disparities in
healthcare delivery and data reporting may affect
hospitalization dynamics.

Overall, these results align with previous studies
on SARS hospitalization risks and underscore the
feasibility of surveillance-based predictive modeling
in low- and middle-income countries. However, the
moderate predictive performance highlights the
need for more comprehensive temporal, clinical,
and institutional data. Crucially, explainable AI

techniques such as SHAP help bridge algorithmic
outputs and clinical reasoning, promoting
transparency and supporting integration into
healthcare decision-making.

5 LIMITATIONS

This study has limitations: First, the SIVEP-Gripe
database may have incomplete data,
underreporting, and regional quality variations.
Although imputation methods were applied,
residual bias from missing or inconsistent entries
may persist. Second, the operational definition of
prolonged length of stay (PLOS > 7 days) is
somewhat arbitrary and may not generalize across
clinical settings. Third, the models were restricted
to admission-time features, excluding dynamic
variables such as treatment interventions,
laboratory trajectories, and hospital capacity
indicators that could improve predictive accuracy.
Fourth, hyperparameter optimization was
deliberately  constrained for  computational
efficiency, potentially limiting model performance.
Finally, external validity remains uncertain beyond
Brazil's 2024 dataset, underscoring the need for
cross-temporal and multi-institutional validation.

6. CONCLUSIONS

This study successfully developed and
compared three ensemble machine learning
models—Random Forest, XGBoost, and CatBoost—
for predicting prolonged hospital stays among SARS
patients in Brazil using early admission data. All
models exhibited comparable, moderate
discrimination, with XGBoost achieving marginally
superior overall AUC and accuracy, and Random
Forest excelling in recall. Explainable AI analysis
highlighted key predictors—particularly asthma,
age, oxygen saturation, and geographic region—
reinforcing their  clinical plausibility and
interpretability.

These findings highlight the feasibility of
leveraging national surveillance data for predictive
analytics in healthcare resource management.
Despite moderate performance, the models’ data-
efficient design makes them a solid foundation for
scalable early-warning tools in public health. It is
important to mention that the proposed pipeline
can be extended to other public datasets, offering
a flexible and interpretable framework for predictive
health analytics.

49

DOI: 10.25286/repa.v11i1.3537



A Data-Driven and Explainable Machine Learning Approach to Predict Prolonged Hospitalization in

Brazilian SARS Patients

However, as outlined in the limitations (Section
5), challenges such as data incompleteness in
SIVEP-Gripe, the arbitrary PLOS threshold (>7
days), and exclusion of dynamic clinical variables
may constrain generalizability. These issues
underscore the need for cautious application in
diverse settings.

Future research should integrate more
sophisticated temporal and clinical features,
alongside optimized hyperparameter tuning and
prospective validation, to enhance the
generalizability of models. Embedding such models
into clinical decision support systems and tailoring
them to regional and demographic contexts may
improve hospital resource allocation and patient
outcomes. This could involve integrating electronic
health records for dynamic variables or testing
within international datasets to broaden
applicability.
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